
An efficient algorithm for simulating fracture using large fuse networks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 11403

(http://iopscience.iop.org/0305-4470/36/45/004)

Download details:

IP Address: 171.66.16.89

The article was downloaded on 02/06/2010 at 17:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/45
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 11403–11412 PII: S0305-4470(03)67227-6

An efficient algorithm for simulating fracture using
large fuse networks*

Phani Kumar V V Nukala and Srdan Simunovic

Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge,
TN 37831-6359, USA

E-mail: nukalapk@ornl.gov

Received 6 August 2003
Published 29 October 2003
Online at stacks.iop.org/JPhysA/36/11403

Abstract
The high computational cost involved in modelling of the progressive fracture
simulations using large discrete lattice networks stems from the requirement
to solve a new large set of linear equations every time a new lattice bond is
broken. To address this problem, we propose an algorithm that combines the
multiple-rank sparse Cholesky downdating algorithm with the rank-p inverse
updating algorithm based on the Sherman–Morrison–Woodbury formula for the
simulation of progressive fracture in disordered quasi-brittle materials using
discrete lattice networks. Using the present algorithm, the computational
complexity of solving the new set of linear equations after breaking a bond
reduces to the same order as that of a simple backsolve (forward elimination
and backward substitution) using the already LU factored matrix. That is,
the computational cost is O(nnz(L)), where nnz(L) denotes the number of
non-zeros of the Cholesky factorization L of the stiffness matrix A. This
algorithm using the direct sparse solver is faster than the Fourier accelerated
preconditioned conjugate gradient (PCG) iterative solvers, and eliminates the
critical slowing down associated with the iterative solvers that is especially
severe close to the critical points. Numerical results using random resistor
networks substantiate the efficiency of the present algorithm.

PACS numbers: 62.20.Mk, 46.50.+a

1. Introduction

Progressive damage evolution leading to failure of disordered quasi-brittle materials has been
studied extensively using various types of discrete lattice models [1–8]. Large-scale numerical

* The submitted manuscript has been authored by a contractor of the US Government under contract no
DE-AC05-00OR22725. Accordingly, the US Government retains a non-exclusive, royalty-free licence to publish or
reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

0305-4470/03/4511403+10$30.00 © 2003 IOP Publishing Ltd Printed in the UK 11403

http://stacks.iop.org/ja/36/11403

11404 P K V V Nukala and S Simunovic

simulation of these lattice networks in which the damage is accumulated progressively by
breaking one bond at a time until the lattice system falls apart has often been hampered due
to the fact that a new large set of linear equations has to be solved everytime a lattice bond
is broken. Since the number of broken bonds at failure, nf , increases with increasing lattice
system sizes, L, i.e. nf ∼ O(L1.7), numerical simulation of large lattice systems becomes
prohibitively expensive. Furthermore, in fracture simulations using discrete lattice networks,
ensemble averaging of numerical results is necessary to obtain a realistic representation of
the lattice system response. This further increases the computational cost associated with
modelling fracture simulations in disordered quasi-brittle materials using large discrete lattice
networks.

Fourier accelerated PCG iterative solvers [9–11] have been used in the past for simulating
the material breakdown using large lattices. However, these methods do not completely
eliminate the critical slowing down associated with the iterative solvers close to the critical
point. As the lattice system gets closer to macroscopic fracture, the condition number of the
system of linear equations increases, thereby increasing the number of iterations required to
attain a fixed accuracy. This becomes particularly significant for large lattices. Furthermore,
the Fourier acceleration technique is not effective when fracture simulation is performed using
central-force and bond-bending lattice models [10].

This study presents an algorithm that combines the multiple-rank sparse Cholesky
downdating scheme with the rank-p inverse updating scheme of the stiffness matrix, which
effectively reduces the computational bottleneck involved in re-solving the new set of equations
after everytime a bond is broken. In this paper, we consider a random threshold model
problem, where a lattice consists of fuses having the same conductance, but the bond breaking
thresholds, ic, are based on a broad (uniform) probability distribution, which is constant
between 0 and 1. This relatively simple model has been extensively used in the literature
[1–7] for simulating the fracture and progressive damage evolution in brittle materials, and
provides a meaningful benchmark for comparing different algorithms. A broad thresholds
distribution represents large disorder and exhibits diffusive damage leading to progressive
localization, whereas a very narrow thresholds distribution exhibits brittle failure in which a
single crack propagation causes material failure. Periodic boundary conditions are imposed
in the horizontal direction to simulate an infinite system, and a constant voltage difference
(displacement) is applied between the top and the bottom of lattice system. The simulation is
initiated with a triangular lattice of intact fuses of size L × L, in which disorder is introduced
through random breaking thresholds. The voltage V across the lattice system is increased
until a fuse (bond breaking) burns out. The burning of a fuse occurs whenever the electrical
current (stress) in the fuse (bond) exceeds the breaking threshold current (stress) value of the
fuse. The current is redistributed instantaneously after a fuse is burnt. The voltage is then
gradually increased until a second fuse is burnt, and the process is repeated. Each time a fuse is
removed, the electrical current is redistributed and hence it is necessary to re-solve Kirchhoff
equations to determine the current flowing in the remaining bonds of the lattice. This step
is essential for determining the fuse that is going to burn up under the redistributed currents.
Therefore, numerical simulations leading to final breaking of lattice system network are very
time consuming especially with increasing lattice system size.

1.1. Summary of the proposed algorithm

The algorithm presented in this paper reduces the computational complexity of obtaining the
solution xn, after the nth bond is broken, to a backsolve using the already existent factorization
of the stiffness matrix Am, and p = (n − m) vector updates. The algorithm is based on the

Fracture of large fuse networks 11405

well-known Shermon–Morrison–Woodbury formula [12] for obtaining the inverse of the new
stiffness matrix A−1

n+1 (after the (n+1)th fuse is burnt) from the old stiffness matrix inverse A−1
n

through a rank-1 update. Infact, the algorithm is such that if the inverse of the lattice stiffness
at any stage (m = 0, 1, 2, . . .) of analysis A−1

m is available, then all subsequent analysis
involving (n = m + 1,m + 2, . . .) burnt fuses can be carried out using p = (n − m) vector
updates. However, since most often the inverse of the stiffness matrix is rarely ever explicitly
calculated, the algorithm additionally requires a backsolve using the already existent factored
matrix Am. The backsolve operation is further simplified by the fact that it is performed on a
trivial load vector and hence the solution can be obtained easily.

Based on the above description of the algorithm presented in this paper, given the
factorization of the matrix Am, the computational cost involved in all the subsequent steps
(n = m + 1,m + 2, . . .) is a backsolve using the already factored matrix, and p = (n − m)

vector updates. The computational complexity of the backsolve is O(nnz(Lm)), where
nnz(Lm) denotes the number of non-zeros of the Cholesky factorization Lm of Am. The
computational complexity of p vector updates is O(pndof), where ndof denotes the number
of degrees of freedom in the system. As p increases, it is possible that the computational
cost associated with the p vector updates exceeds the cost involved in the factorization of
the matrix An. Under these circumstances, it is advantageous to obtain the factorization Ln

of the new stiffness matrix An, and use this Ln for all the subsequent backsolve analysis
steps, until the computational cost associated with the vector updates once again exceeds the
stiffness factorization cost. Using the algorithm presented in the paper, it is not necessary to
re-factorize the new stiffness matrix An. Instead, we adopt the multiple-rank update of the
sparse Cholesky factorization algorithm [13, 14] for updating the Lm → Ln. This multiple-
rank update of Lm to obtain the new factorization Ln is computationally cheaper compared
with the direct factorization Ln of the new stiffness matrix An [13, 14].

2. Proposed algorithm

In the following, we describe the updating scheme for the inverse of the stiffness matrix in
the case of scalar random fuse model after a fuse has been burnt. A similar procedure can be
applied for central-force and beam models [15].

Let An represent the stiffness matrix of the random fuse network system in which n
number of fuses are either missing (random dilution) or have been burnt during the analysis.
Let us also assume that a fuse ij (the (n+1)th fuse) is burnt when the externally applied voltage
is increased gradually. In the above description, i and j refer to the global degrees of freedom
connected by the fuse before it is broken. For the scalar random fuse model, the degrees of
freedom i and j are also equivalent to the node i and node j connected by the fuse before
it is broken. The new stiffness matrix An+1 of the lattice system after the fuse ij is burnt is
given by

An+1 = An − kij vvt (1)

where

vt = {0 · · · 1 · · · −1 · · · 0} (2)

and kij is the conductance of the fuse ij before it is broken. After breaking the fuse ij , the
electrical current in the network is redistributed instantaneously. The redistributed current
values in the network are calculated by re-solving the Kirchhoff equations, i.e. by solving the
new set of equations formed by the matrix An+1. This procedure is very time consuming since
a new set of equations (inverse of An+1 for n = 0, 1, 2, . . .) need to be solved everytime after

11406 P K V V Nukala and S Simunovic

breaking the (n + 1)th fuse. However, significant computational advantages can be gained if
the inverse of An+1 is obtained simply by updating the inverse of An. This is achieved by using
the well-known Shermon–Morrison–Woodbury formula for inverting the rank-p update of a
matrix. Thus, the inverse A−1

n+1 of equation (1) can be expressed as

A−1
n+1 =

[
A−1

n + kij

uut

(1 − kij vtu)

]
(3)

where

u = A−1
n v = A−1

n (i−j)
= [

(ith − j th) columns of A−1
n

]
. (4)

Hence, the inverse of the stiffness matrix of the lattice system after breaking the (n + 1)th fuse
ij is obtained simply by a rank-1 update of the inverse of the stiffness matrix before the fuse
is broken. Further, if the inverse of the matrix An is available explicitly, then the vector u can
be obtained trivially from the ith and j th columns of A−1

n . In particular, this implies that if the
inverse of the matrix An is available explicitly at any stage n = 0, 1, 2, . . . of analysis, then
the redistributed currents in all subsequent stages of analysis involving m = n + 1, n + 2, . . .

burnt fuses can be obtained in a trivial fashion from the column vectors of A−1
n and the vectors

up, where p = 1, 2, . . . , (m − n). However, since the inverse of the stiffness matrix An is not
usually calculated explicitly, the vector u is obtained using the already factorized An matrix
through a backsolve operation (forward reduction and backward substitution) on the vector v
(equation (4)).

Remark 1. Without loss of generality, when the fuse that is broken is attached to a constrained/

prescribed degree of freedom j , the vector v is given by

vt = {0 · · · 1 · · · 0} (5)

and

u = A−1
n (i)

= [
ith columns of A−1

n

]
. (6)

In the case of periodic boundary conditions, consider the case of a broken fuse jk that is
attached to a slave degree of freedom k whose master degree of freedom is i. Under these
circumstances, the methodology presented earlier is applicable in a straightforward manner if
it is understood that breaking the fuse jk is equivalent to breaking the fuse ij .

Remark 2. The load vector bn+1 will differ from the load vector bn only if the (n+1)th broken
fuse ij is attached to a prescribed degree of freedom, where a constant voltage difference is
imposed. Once again, for presentation purposes, let us assume that j is such a prescribed
degree of freedom. Then the load vector bn+1 is given by

bn+1 = bn + w (7)

where

wt = kij {0 0 · · · −1 · · · 0 0}. (8)

If neither i nor j is a prescribed degree of freedom, then w = 0.

Before breaking the (n + 1)th fuse, the solution vector xn is obtained by solving the
Kirchhoff equations

Anxn = bn. (9)

After breaking the (n + 1)th fuse that connects the ith and j th degrees of freedom, the updated
solution vector xn+1 is obtained by solving the new set of Kirchhoff equations

An+1xn+1 = bn+1. (10)

Fracture of large fuse networks 11407

Substituting equations (3), (7) and (9) into the solution of equation (10) and simplifying the
result, we have

xn+1 = A−1
n+1bn+1

=
[

A−1
n + kij

uut

(1 − kij vtu)

]
(bn + w)

= xn + α(utbn+1)u (11)

where

α = kij

(1 − kij vtu)
− kij if i or j is prescribed

= kij

(1 − kij vtu)
otherwise. (12)

The only unknown in equation (11) is the column vector u, which can be obtained through
a backsolve operation using either equation (4) or equation (6). Furthermore, it is not necessary
to explicitly assemble the matrix An and perform factorization to do the backsolve operation.
Instead, we can use the already factorized matrix Am to obtain the vector u. In the above
description, m < n and denotes the latest broken bond at which the factorization Lm of Am is
available. To see this clearly, let us first decompose the matrix A−1

n into A−1
m and a matrix C

such that

A−1
n = A−1

m + C (13)

where

C =
p=(n−m)∑

l=1

kl

ulut
l(

1 − klvt
lul

) . (14)

Due to the amount of the storage requirement
(∼O

(
n2

dof

))
, and the computational cost

associated in evaluating the equation (14)
(∼O

(
n2

dof

))
, the matrix C is never explicitly

calculated or stored. Instead, the vectors ul for l = 1, 2, . . . , (n − m) are stored, and the
(j th − ith) column of C is evaluated as

C(j−i) =
p=(n−m)∑

l=1

kl

(
ulj − uli

)
(
1 − klvt

lul

)ul (15)

where uli and ulj refer to the ith and j th components of the vector ul . Equation (15) reduces
the storage and computational cost to (∼O(pndof)) and (∼O(pndof)) operations, respectively.
Even with this modification, the storage and computational requirements can become
prohibitively expensive as the number of updates, p, increases, and hence it is necessary
to limit the maximum number of vector updates between two successive factorizations to a
certain maxupd. That is, it is necessary to perform or update the factorization of the stiffness
matrix A at regular intervals.

Instead of re-factorizing the stiffness matrix A after every maxupd steps, it is more
effective to update the factorization Lm using the multiple-rank sparse Cholesky factorization
update algorithm [13, 14]. This multiple-rank update of Lm to obtain the new factorization
Ln+1, after breaking the (n + 1)th fuse, is computationally cheaper compared with the direct
factorization Ln+1 of the new stiffness matrix An+1 [13, 14]. We use the multiple-rank
downdate algorithm presented in [13, 14] to obtain the new Cholesky factorization Ln+1 from
the existing Cholesky factor Lm. The multiple-rank downdate algorithm [13, 14] is based
on the analysis and manipulation of the underlying graph structure of the stiffness matrix A

11408 P K V V Nukala and S Simunovic

and on the methodology presented in Gill et al [16, 17] for modifying a dense Cholesky
factorization. This algorithm incorporates the change in the sparsity pattern of L and is
optimal in the sense that the computational time required is proportional to the number of
changing non-zero entries in L. In particular, since the breaking of fuses is equivalent to
removing the edges in the underlying graph structure of stiffness matrix A, the new sparsity
pattern of the modified L must be a subset of the sparsity pattern of the original L. Denoting
the sparsity pattern of L by L, we have

Lm ⊇ Ln ∀m < n. (16)

Therefore, we can even use the modified dense Cholesky factorization update (algorithm 5
in the Davis and Hager [13]) and work only on the non-zero entries in L. Furthermore,
since the changing non-zero entries in L depend on the ith and j th degrees of freedom of the
fuse ij that is broken, it is only necessary to modify the non-zero elements of a submatrix
of L.

The multiple-rank update of the sparse Cholesky factorization is computationally superior
to an equivalent series of rank-1 updates since the multiple-rank update makes one pass through
L in computing the new entries, while a series of rank-1 updates require multiple passes
through L [14]. The multiple-rank update algorithm updates the Cholesky factorization Lm of
the matrix Am to Ln+1 of the new matrix An+1, where An+1 = Am + σYYt , and Y represents a
ndof × p rank-p matrix. The computational cost involved in breaking the (n + 1)th fuse ij is
simply a backsolve operation (O(nnz(Lm))) on a load vector given by equation (2) using the
already factored matrix Am, (n + 2 − m) vector updates, and one vector inner product.

The optimum number of steps between successive factorizations of the matrix A is
determined by minimizing the computational CPU time required for the entire analysis. Let
tfac and tupd denote the average CPU time required for performing/updating the factorization
Am and the average CPU time required for a single rank-1 update of the solution ũ(n+1−m),
respectively. Note that the evaluation of ũ(n+1−m) requires (n − m) vector updates. Let the
estimated number of steps for the lattice system failure be nsteps. Then, the total CPU time
required for solving the linear system of equations until the lattice system failure is given by

� = nfactfac +
∑ (nsteps − nfac)

nfac
tupd

= nfactfac +
1

2

(nsteps − nfac)

nfac

nsteps

nfac
tupd (17)

where nfac denotes the number of factorization until lattice system failure. The optimum
number of factorizations, nopt-fac, for the entire analysis is obtained by minimizing the function
�. The maximum number of vector updates, maxupd, between successive factorizations is
estimated as

maxupd = (nsteps − nopt-fac)

nopt-fac
(18)

3. Numerical simulation results

In the following, we consider two alternate forms of the algorithm presented in this paper.
These two solver types are

• Solver type A. Given the factorization Lm of Am, we use rank-1 sparse Cholesky
update/downdate [13] to update the factorization Ln+1 (O(nnz(Ln)) for all subsequent
values of n = m,m + 1, Once the factorization Ln+1 of An+1 is obtained, the solution
vector xn+1 is obtained by a backsolve operation (O(nnz(Ln+1)).

Fracture of large fuse networks 11409

Table 1. Computational cost associated with solver type A.

Size CPU (s) Wall (s) Simulations

32 0.592 0.687 20 000
64 10.72 11.26 4 000

128 212.2 214.9 800
256 5647 5662 96
512 93779 96515 16

Table 2. Computational cost associated with solver type B.

Size CPU (s) Wall (s) Simulations

32 0.543 0.633 20 000
64 11.15 12.01 4 000

128 211.5 214.1 800
256 6413 6701 96

Table 3. Computational cost associated with optimal circulant PCG.

Size CPU (s) Wall (s) Iterations Simulations

32 11.66 12.26 25 469 20 000
64 173.6 178.8 120 570 1600

128 7473 7725 622 140 128

• Solver type B. Given the factorization Lm of Am, the algorithm evaluates the new solution
vector xn+1, after the (n + 1)th fuse is burnt, using equation (11) (O(nnz(Lm) + (n +
2 − m) vector updates). Instead of refactorizing the matrix after maxupd steps, we use
rank-p sparse Cholesky update/downdate [14] to obtain the factorization Lm+maxupd of
the matrix Am+maxupd (O(nnz(Lm)).

The above two algorithms are benchmarked against the PCG iterative solvers, in which optimal
[18–21] circulant matrices are used as preconditioners to the Laplacian operator (Kirchhoff
equations). The Fourier accelerated PCG presented in [9–11] is not optimal in the sense
described in [18–21], and hence it is expected to take more number of CG iterations compared
with the optimal circulant preconditioners.

In the numerical simulations using solver types A and B, the supernodal Cholesky
factorization is performed using the TAUCS solver library (http://www.tau.ac.il/ stoledo/taucs).
In these simulations, the maximum number of vector updates, maxupd, is chosen to be
a constant for a given lattice size. We choose maxupd = 25 for L = {4, 8, 16, 24, 32},
maxupd = 50 for L = 64, and maxupd = 100 for L = {128, 256, 512}. For L = 512, maxupd
is limited to 100 due to memory constraints. By keeping the maxupd value constant, it is
possible to realistically compare the computational cost associated with different solver types.
Moreover, the relative CPU times taken by these algorithms remains the same even when the
simulations are performed on different platforms.

Tables 1 and 2 present the CPU and wall-clock times taken for one configuration
(simulation) using the solver types A and B, respectively. These tables also indicate the number
of configurations, Nconfig, over which ensemble averaging of the numerical results is performed.
The CPU and wall-clock times taken by the optimal circulant matrix preconditioned iterative
solver is presented in tables 3. For iterative solvers, the number of iterations presented in
tables 3 denote the average number of total iterations taken to break one intact lattice
configuration until it falls apart.

11410 P K V V Nukala and S Simunovic

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Snapshots of damage in a typical triangular lattice system of size L = 512. Number of
broken bonds at the peak load and at failure are 83 995 and 89 100, respectively. (a)–(i) represent
the snapshots of damage after breaking nb number of bonds. (a) nb = 25 000, (b) nb = 50 000,
(c) nb = 75 000, (d) nb = 80 000, (e) nb = 83 995 (peak load), (f) nb = 86 000, (g) nb = 87 000,
(h) nb = 88 000 and (i) nb = 89 100 (failure).

Based on the results presented in tables 1–3, it is clear that for modelling the breakdown of
disordered media as in starting with an intact lattice and successive breaking of bonds until the
lattice system falls apart, the solver types A and B based on direct solvers are superior to the
Fourier accelerated iterative PCG solver techniques. It should be noted that for larger lattice
systems, limitations on the available memory of the processor may decrease the allowable
maxupd value, as in the case of L = 512 using solver type B. However, this is not a concern
for simulations performed using solver type A.

Fracture of large fuse networks 11411

Table 4. Number of broken bonds at peak and at failure.

Triangular Diamond

L Nconfig Time (s) np nf np nf

4 50 000 0.002 13 19 9 14
8 50 000 0.006 41 54 26 37

16 50 000 0.042 134 168 80 107
24 50 000 0.186 276 335 161 208
32 50 000 0.592 465 554 268 337
64 50 000 10.72 1 662 1 911 942 1 126

128 12 000 212.2 6 068 6 766 3 406 3 901
256 1 200 5 647 22 572 24 474 12 571 13 846
512 200 93 779 84 487 89 595

Using the solver type A, we have performed numerical simulations on two-dimensional
triangular and diamond (square lattice inclined at 45◦ between the bus bars) lattice networks.
Table 4 presents the number of broken bonds at peak load, np, and at fracture, nf , for each of
the lattice sizes considered. In addition, table 4 also presents the number of configurations,
Nconfig, over which statistical averaging is performed for different lattice sizes. The numerical
results presented in tables 1–3 are performed on a single processor of Cheetah (27 Regatta
nodes with 32 1.3 GHz Power4 processors each), the eighth fastest supercomputer in the world
(http://www.ccs.ornl.gov). However, the numerical simulation results presented in table 4 are
performed on Eagle (184 nodes with four 375 MHz Power3-II processors) supercomputer at
the Oak Ridge National Laboratory to run simulations simultaneously on more number of
processors. Figure 1 presents the snapshots of progressive damage evolution for the case of
a broadly distributed random thresholds model problem in a triangular lattice system of size
L = 512.

4. Conclusions

The paper presents an algorithm based on rank-1 update of the inverse of the stiffness matrix
and the multiple-rank downdating of the sparse Cholesky factorization for simulating fracture
and damage evolution in disordered quasi-brittle materials using discrete lattice networks.
Using the proposed algorithm, the average computational cost associated with breaking a
bond reduces to the same order as that of a simple backsolve (forward elimination and
backward substitution) operation using the already LU factored matrix. This algorithm based
on direct solver techniques eliminates critical slowing down observed in fracture simulations
using the conventional iterative schemes. Numerical simulations on random resistor networks
demonstrate that the present algorithm is computationally superior to the commonly used
Fourier accelerated preconditioned conjugate gradient iterative solver.

For analysis of fracture simulations using discrete lattice networks, ensemble averaging of
numerical results is necessary to obtain a realistic representation of the lattice system response.
In this regard, for very large lattice systems with large number of system of equations, this
methodology is especially advantageous as the LU factorization of the system of equations
can be performed using a parallel implementation on multiple processors. Subsequently, this
factored LU decomposition can then be distributed to each of the processors to continue with
independent fracture simulations that only require less intensive backsolve operations.

11412 P K V V Nukala and S Simunovic

Acknowledgment

This research is sponsored by the Mathematical, Information and Computational Sciences
Division, Office of Advanced Scientific Computing Research, US Department of Energy
under contract number DE-AC05-00OR22725 with UT-Battelle, LLC. The first author wishes
to thank Ed F D’Azevedo for many helpful discussions and excellent suggestions.

References

[1] de Arcangelis L, Redner S and Herrmann H J 1985 A random fuse model for breaking processes J. Phys. (Paris)
Lett. 46 585–90

[2] Sahimi M and Goddard J D 1986 Elastic percolation models for cohesive mechanical failure in heterogeneous
systems Phys. Rev. B 33 7848–51

[3] Duxbury P M, Beale P D and Leath P L 1986 Size effects of electrical breakdown in quenched random media
Phys. Rev. Lett. 57 1052–5

[4] Duxbury P M, Leath P L and Beale P D 1987 Breakdown properties of quenched random systems: the
random-fuse network Phys. Rev. B 36 367–80

[5] Hansen A and Roux S 2000 Statical Toolbox for Damages and Fracture (New York: Springer) pp 17–101
[6] Herrmann H J and Roux S (ed) 1990 Statistical Models for the Fracture of Disordered Media (Amsterdam:

North-Holland)
[7] Sahimi M 1998 Non-linear and non-local transport processes in heterogeneous media from long-range

correlation percolation to fracture and materials breakdown Phys. Rep. 306 213–395
[8] Chakrabarti B K and Gilles Benguigui L 1997 Statistical Physics of Fracture and Breakdown in Disordered

Systems (Oxford: Oxford Science Publications)
[9] Batrouni G G, Hansen A and Nelkin M 1986 Fourier acceleration of relaxation processes in disordered systems

Phys. Rev. Lett. 57 1336–9
[10] Batrouni G G and Hansen A 1988 Fourier acceleration of iterative processes in disordered-systems J. Stat. Phys.

52 747–73
[11] Batrouni G G and Hansen A 1998 Fracture in three-dimensional fuse networks Phys. Rev. Lett. 80 325–8
[12] Golub G H and van Loan C F 1996 Matrix Computations (Baltimore, MD: The Johns Hopkins University Press)
[13] Davis T A and Hager W W 1999 Modifying a sparse Cholesky factorization SIAM J. Matrix Anal. Appl. 20

606–27
[14] Davis T A and Hager W W 2001 Multiple-rank modifications of a sparse Cholesky factorization SIAM J. Matrix

Anal. Appl. 22 997–1013
[15] Nukala P K V V and Simunovic S unpublished
[16] Gill P E, Golub G H, Murray W and Saunders M A 1974 Methods for modifying matrix factorizations Math.

Comp. 28 505–35
[17] Gill P E, Murray W and Saunders M A 1975 Methods for computing and modifying the LDV factors of a matrix

Math. Comp. 29 1051–77
[18] Chan T 1988 An optimal circulant preconditioner for Toeplitz systems SIAM J. Sci. Stat. Comput. 9 766–71
[19] Chan R H 1989 Circulant preconditioners for Hermitian Toeplitz systems SIAM J. Matrix Anal. Appl. 10 542–50
[20] Chan R and Chan T 1992 Circulant preconditioners for elliptic problems Numer. Linear Algebra Appl. 1 77–101
[21] Chan R H and Ng M K 1996 Conjugate gradient methods for Toeplitz systems SIAM Rev. 38 427–82

